Главная - Новости
Сае технологии. Понятия CAD, САМ и САЕ. Спектр возможностей системы

Пермский национальный исследовательский политехнический университет

Кафедра: Инновационные технологии в машиностроении

Реферат по дисциплине

Инженерный анализ изделий в САПР

САЕ системы. Решаемые задачи. Представители.

Выполнил:

студент группы ТКА-13-1бзу

Азанов А.С.

Проверил ст. преподаватель:

Осипович Дарья Андреевна

1. Общие понятия о САЕ системах…………………………………………………………………………3

2. Классификация САЕ систем……………………………………………………………………………...3

3. Возможности САЕ систем……………………………………………………………………………….4

4. Фирмы – представители САЕ систем…………………………………………………………………..4

5. Система NX CAE…………………………………………………………………………………………6

6. Этапы работы с САЕ…………………………………………………………………………………….10

Общие понятия о CAE системах.

CAE (Computer-Aided Engineering) - комплекс программных продуктов, которые способны дать пользователю характеристику того, как будет вести себя в реальности разработанная на компьютере модель изделия. По-другому CAE можно назвать системами инженерного анализа. В своей работе они используют различные математические расчеты: метод конечных элементов, метод конечных разностей, метод конечных объемов. При помощи CAE инженер может оценить работоспособность изделия, не прибегая к значительным временным и денежным затратам.

CAE неразрывно связаны с CAD и CAM. Развитие этих программных продуктов шло параллельно. В начале 80-х годов XX столетия первые пользователи CAD/CAM/CAE применяли для работы графические терминалы, которые были компонентами мейнфреймов IBM и Control Data. Основными поставщиками аппаратного и программного обеспечения CAD/CAM/CAE были компании Applicon, Auto-Trol Technology, Calma, Computervision и Intergraph. Поскольку мейнфреймы того времени были несовершенными, то появлялись определенные трудности. Интерактивный режим работы был практически недоступен из-за большой нагрузки на центральный процессор. Стоимость одной CAD/CAM/CAE системы составляла порядка $90000. С развитием прогресса аппаратные платформы CAD/CAM/CAE систем перешли с мейнфреймов на персональные компьютеры. Это было связано с меньшей стоимостью и большей производительностью ПК по сравнению с мейнфреймами. Закономерно снизилась и цена на CAD/CAM/CAE до $20000. На базе ПК создавались рабочие станции для CAD, которые поддерживали архитектуру IBM PC или Motorola. В середине 80-х годов появились архитектуры микропроцессоров с усеченным набором команд RISC (Reduced Instruction Set Computing). На их основе были разработаны более производительные рабочие станции, опиравшиеся на операционную систему Unix. С середины 90-х годов конкуренцию системам RISC/Unix



составили технологии, разработанные компанией Intel на основе операционных систем MS Windows NT и MS Windows 2000. В настоящее время стоимость CAD/CAM/CAE систем снизилась и составляет не более $10000.

Классификация САЕ систем.

САЕ системы подразделяются:

Системы полнофункционального инженерного анализа, обладающие мощными средствами, большими хранилищами типов для сеток конечных элементов, а также всевозможных физических процессов. В них предусмотрены собственные средства моделирования геометрии. Кроме того, есть возможность импорта через промышленные стандарты Parasolid, ACIS. Самыми известными подобными системами считаются ANSYS/Multiphysics, AI*NASTRAN и MSC.NASTRAN.

Системы инженерного анализа, встроенные в тяжелые САПР, имеют значительно менее мощные средства анализа, но они ассоциативны с геометрией, поэтому отслеживают изменения модели. Расчетные данные структурированы и интегрированы в общую систему проектирования тяжелой САПР. К ним относятся Pro/MECHANICA для Pro/ENGINEER, Unigraphics NX CAE для Unigraphics NX, Extensive Digital Validation (CAE) для I-deas, Catia CAE для CATIA;

Системы инженерного анализа среднего уровня не имеют мощных расчетных возможностей и хранят данные в собственных форматах. Некоторые их них включают в состав встраиваемый интерфейс в CAD-системы, другие считывают геометрию из CAD. К первым относятся COSMOS/Works, COSMOS/Motion, COSMOS/FloWorks для SolidWorks, ко вторым - visualNastran, Procision.

Возможности САЕ систем.

С помощью САЕ можно проводить:

· Стресс-анализ компонентов и узлов на основе метода конечных элементов;

· Термический и гидродинамический анализ;

· Кинематические исследования;

· Моделирование таких процессов, как литье под давлением;

· Оптимизацию продуктов или процессов.

4. Фирмы – представители CAE систем .

Основные фирмы – представители CAE – систем:

Пакет SolidWorks. Это мощный машиностроительный CAD пакет для твёpдотельного пapaметpического моделиpовaния сложных деталей и сборок. Системa констpуиpовaния сpеднего клaссa, бaзиpующaяся нa пapaметpическом геометpическом ядpе Parasolid. Создaнa специaльно для использовaния нa пеpсонaльных компьютеpaх под упpaвлением опеpaционных систем Windows 95 и Windows NT.

  1. SolidWorks.
  2. Аскон.
  3. Delcam.

Пакет Pro/ENGINEER. Это система высокого уровня, САПР для единого цикла проектирование-производство. Программный комплекс Pro/ENGINEER охватывает весь цикл "конструирование - производство" в машиностроении. Во всем мире более 16000 компаний используют программные продукты фирмы РТС для сокращения длительности сквозных проектно-производственных циклов, оптимизации инженерных процессов и улучшения качества продукции. Ядро Pro/ENGINEER использует уникальную по своим возможностям технологию -- Proven Technology, основанную на граничных представлениях
Разработчик - Parametric Technology Corporation, США.

Примеры фирм – представителей:

Пакет SolidCAM. Пакет генерации управляющих программ для станков с ЧПУт при обработке деталей, содержащих сложную поверхностную или твердотельную геометрию. Обеспечивает 2,5 и 3-осевую фрезерную обработку, токарную обработку, визуализацию процесса обработки.
Разработчик - CADTECH, Израиль.

Пакет Ansys. Конечноэлементный пакет. Самое широко используемое средство обеспечения инженерных расчётов в мире. Универсальный расчетный комплекс, применяемый в различных видах анализа. Используется для расчета конструкций различного типа (авиастроение, судостроение, машиностроение, строительство, энергетика, электронная промышленность и др.) на воздействия различной природы. С его помощью производится как линейный, так и нелинейный статический и динамический анализ конструкций, анализ усталостных разрушений, решение линейных и нелинейных задач устойчивости и теплофизики. Задачи гидро- и газодинамики, акустики, электродинамики и электростатики, пьезоэлектричество. Единственный из представленных на мировом рынке комплекс, с помощью которого с использованием одной базы решаются связанные задачи типа теплофизика-прочность, электродинамика-прочность, гидро-газодинамика и прочность и др. ANSYS позволяет конструктору ещё в процессе проектирования предсказать поведение изделия и провести прочностной, модальный и тепловой анализы.; сведения о напряжениях, деформациях, распределениях температур и тепловых потоков, возникающих в изделии. Основываясь на выводимых программой цветовых контурах, представляющих градации "необходимости" материала (оставить, убрать), конструктор убирает ненужный материал, подводя конструкцию к оптимальному весовому соотношению.
Разработчик - ANSYS Inc., США.

Пакет Unigraphics. Система Unigraphics является CAD/CAM/CAE - системой высокого уровня. Unigraphics позволяет осуществлять полностью виртуальное проектирование изделий, механообработка деталей сложных форм, имеет полностью ассоциативную базу данных мастер-модели, Unigraphics Solutions , одна из самых быстроразвивающихся компаний, производящих системы автоматизированного проектирования, производства и управления проектами, занимается разработкой, продажей и технической поддержкой программного обеспечения для автоматизации проектирования, производства, инженерного анализа и управления проектами для всех областей промышленности, включая автомобилестроение, авиационную и космическую промышленности, станкостроение, производство товаров народного потребления и т.п.
Серия продуктов Unigraphics Solutions, Inc.: Unigraphics Solutions, Parasolid, Solid Edge, Unigraphics, IMAN, ProductVision, GRIP .
Разработчик - Unigraphics Solutions, Inc., США.

Пакет CATIA. CATIА/CADAM Solutions - это полностью интегрированная универсальная CAD/CAM/CAE система высокого уровня, позволяющая обеспечить параллельное проведение конструкторско-производственного цикла CATIA, являясь универсальной системой автоматизированного проектирования, испытания и изготовления, широко применяется на крупных машиностроительных предприятиях во всем мире для автоматизированного проектирования, подготовки производства, реинжиниринга. Число фирм-пользователей CATIA превышает 8 тысяч.

Функции, поддерживаемые CATIA/CADAM Solutions :
- администрирование - планирование, управление ресурсами, инспектирование и документирование проекта;
- самый совершенный моделлинг;
- описание всех механических связей между компонентами объекта и приведение их в состояние пространственного взаимопозиционирования;
- автоматический анализ геометрических и логических конфликтов
- анализ свойств сложных сборок;
- разработанный инструментарий трассировок систем коммуникаций с соблюдением заданных ограничений;
- специализированные приложения для технологической подготовки производства.

Компании DASSAULT SYSTEMES (Франция) и IBM (США) являются совместными разработчиками и распространителями системы автоматизированного проектирования. В последние три года параллельно сосуществуют две CATIA: версии 4 и 5, причем версия 4 - только на рабочих станциях и на ядре DASSAULT SYSTEMES, а версия 5 - и для РС на ядре CASCADE разработки MATRA.

САЕ-системы

САЕ-системы - это общий термин для обозначения информационного обеспечения автоматизированного анализа проекта, имеющего целью обнаружение ошибок (прочностные расчеты, коллизии кинематики и т.п.) или оптимизацию характеристик изделия.

Системы расчета и инженерного анализа (САЕ) являются наиболее верным средством обоснования принятия инженерных (конструкторских и технологических) решений и охватывают широкий спектр задач: расчеты будущего изделия на прочность (устойчивость, резонансные колебания, тепловой анализ), решение задач, связанных с течением жидкостей и газов.

Системы компьютерного инженерного анализа позволяют оценить работоспособность принятых решений и оптимизировать разрабатываемую конструкцию (сократить стоимость и сроки изготовления). В последние годы наметилась тенденция более узкой специализации фирм-разработчиков программных средств анализа. Мировыми лидерами в области разработки, поставки и сопровождения программных систем инженерного анализа машиностроительных изделий являются MSC, Software Corporation, SAMTECH, ANSYS и некоторые другие.

Критерии сравнения САЕ-систем:

Используемый математический метод представления геометрии;

Наличие встроенного генератора сетки;

Функциональные возможности;

Возможность импорта данных из различных CAD-систем.

Для проведения какого-либо вида анализа, вначале, в CAD - системе на основе точной геометрической модели создается расчетная (упрощенная) модель путем удаления тех конструктивных элементов, которые не оказывают существенного влияния на результаты анализа. Расчетная модель передается в пакет анализа при помощи стандартных интерфейсов. Отдельные пакеты анализа имеют внутренние средства построения геометрической модели, с помощью которых может быть решена задача моделирования простых форм.

Примеры пакетов, перечень основных задач, решаемых с их помощью, и фирм, выполнивших разработку приведены ниже:

Euler - динамический анализ многокомпонентных механических систем (Автомеханика);

ИСПА - расчет и анализ на прочность (АЛЕКСОФТ);

ПОЛИГОН - конечно-элементная система для моделирования литейных процессов: гидродинамические, тепловые и усадочные процессы в 3D - постановка (ЦНИИ материалов);

Риман - расчет и анализ напряженно-деформированного состояния конструкций, решение упругих и пластических задач, том числе штамповки и ударных напряжений (ПроГруппа);

АРМ WinMachine - комплекс программ для проектирования и расчетов деталей машин, анализа напряженно-деформированного состояния конструкций и их элементов методом конечных элементов (НТЦ АПМ);

Диана - анализ конструкций и их элементов (НИЦ АСК);

GasDinamics Tool - моделирование газодинамических процессов (Тульский гос.университет).

Отдельную группу программного обеспечения инженерного анализа составляют пакеты, предназначенные для анализа динамических процессов. К этой группе относятся ADAMS, МВТУ, ПА-9 и др.

Пакет ADAMS (Mechanical Dynamics, Inc.) может использоваться для динамического и кинематического анализа сложных механических схем механизмов, статического и модального анализа. При помощи этого пакета могут решаться задачи, например, стыковки космического аппарата, динамики полета и посадки и т.п. Двусторонняя связь с конечно-элементными пакетами (ANSYS, MSC.NASTRAN, ABAQUS, I-DEAS) позволяет встраивать неограниченное число конечно-элементных моделей в механизм для учета влияния деформируемости на поведение системы. В ADAMS обеспечен обмен информацией с CAD-системами и пакетами математических методов (MATLAB, MATRIX, EASY5).

Вопросы для самопроверки

1. Перечислите основные этапы ЖЦ радиоэлектронных изделий. Какие подсистемы обеспечивают реализацию каждого из этапов?

2. В чем заключаются технологии сквозного, нисходящего и параллельного проектирования?

3. Какие модули содержит CAD-система конструкторского проектирования. Каковы ее основные функции?

4. Какие задачи решает CAM-система технологической подготовки производства?

5. На каком этапе ЖЦ РЭС применяются системы инженерного анализа (САЕ-системы)? Каков круг задач этих систем?

6. Какие из современных систем поддержки процесса проектирования РЭС Вам знакомы? Охарактеризуйте их.


/CAE были компании Applicon, Auto-Trol Technology, Calma, Computervision и Intergraph. Поскольку мейнфреймы того времени были несовершенными, то появлялись определенные трудности. Интерактивный режим работы был практически недоступен из-за большой нагрузки на центральный процессор. Стоимость одной CAD /CAM /CAE системы составляла порядка $90000. С развитием прогресса аппаратные платформы CAD /CAM /CAE систем перешли с мейнфреймов на персональные компьютеры. Это было связано с меньшей стоимостью и большей производительностью ПК по сравнению с мейнфреймами. Закономерно снизилась и цена на CAD /CAM /CAE до $20000. На базе ПК создавались рабочие станции для CAD , которые поддерживали архитектуру IBM PC или Motorola. В середине 80-х годов появились архитектуры микропроцессоров с усеченным набором команд RISC (Reduced Instruction Set Computing). На их основе были разработаны более производительные рабочие станции, опиравшиеся на операционную систему Unix . С середины 90-х годов конкуренцию системам RISC /Unix составили технологии, разработанные компанией Intel на основе операционных систем MS Windows NT и MS Windows 2000 . В настоящее время стоимость CAD /CAM /CAE систем снизилась и составляет не более $10000.

Классификация

  • Системы полнофункционального инженерного анализа, обладающие мощными средствами, большими хранилищами типов для сеток конечных элементов, а также всевозможных физических процессов. В них предусмотрены собственные средства моделирования геометрии. Кроме того, есть возможность импорта через промышленные стандарты Parasolid , ACIS . Полнофункциональные САЕ-системы лишены ассоциативной связи с CAD . Поэтому, если в процессе подсчета появляется необходимость изменить геометрию, то пользователю придется заново производить импорт геометрии и вводить данные для расчета. Самыми известными подобными системами считаются ANSYS/Multiphysics , AI*NASTRAN и MSC.NASTRAN .
  • Системы инженерного анализа, встроенные в тяжелые САПР , имеют значительно менее мощные средства анализа, но они ассоциативны с геометрией, поэтому отслеживают изменения модели. Расчетные данные структурированы и интегрированы в общую систему проектирования тяжелой САПР . К ним относятся Pro/MECHANICA для Pro/ENGINEER , Unigraphics NX CAE для Unigraphics NX , Extensive Digital Validation (CAE) для I-deas , Catia CAE для CATIA ;
  • Системы инженерного анализа среднего уровня не имеют мощных расчетных возможностей и хранят данные в собственных форматах. Некоторые их них включают в состав встраиваемый интерфейс в CAD -системы, другие считывают геометрию из CAD . К первым относятся COSMOS/Works , COSMOS/Motion , COSMOS/FloWorks для SolidWorks Трехмерная проектная среда , ко вторым - visualNastran , Procision .

Возможности САЕ

С помощью САЕ можно проводить:

  • Прочностной анализ компонентов и узлов на основе метода конечных элементов;
  • Термический и гидродинамический анализ;
  • Кинематические исследования;
  • Моделирование таких процессов, как литье под давлением;
  • Оптимизацию продуктов или процессов.

Этапы работы с САЕ

  • Предварительная обработка - определение характеристик модели и факторов внешней среды, которые будут на нее воздействовать;
  • Анализ и принятие решения;
  • Обработка результатов.

Отрасли применения

Наибольшей популярностью САЕ пользуются в следующих отраслях производства: машиностроение и станкостроение, оборонная и аэрокосмическая промышленность, энергетика, судостроение, производство полупроводников, телекоммуникации, химическая, фармацевтическая и медицинская промышленность, строительство, производство систем отопления, кондиционирования, вентиляции.

Опыт использования САЕ в автомобильной промышленности

Преимущество систем САЕ состоит в том, что автопроизводители могут проводить компьютерное тестирование разрабатываемых моделей. Это позволяет сосредоточить максимум внимания на повышении безопасности, комфортности и долговечности автомобилей, не затрачивая при этом финансовых средств. Безопасность пассажиров при столкновениях может быть оценена при помощи таких программных продуктов, как RADIOSS , LS-DYNA , PAM-CRASH .

Основные направления в развитии САЕ

В процессе развития САЕ разработчики стремятся увеличить их возможности и расширить сферы внедрения. Преследуются следующие цели:

  • Совершенствование методов решения междисциплинарных задач моделирования;
  • Разработка новых платформ для интеграции различных систем САЕ, а также для интеграции САЕ-систем в PLM -решения;
  • Повышение интероперабельности САЕ и CAD систем;
  • Совершенствование методов построения расчетных сеток, описания граничных условий, параллельных вычисление и т.д;
  • Улучшение характеристик моделей, которые применяются для описания свойсв материалов;
  • Оптимизация систем САЕ для компьютерных платформ с 64-битными и многоядерными процессорами, а тем самым улучшение условий для моделирования сложных конструкций с большим количеством степеней свободы.

Мировой рынок

По прогнозу TechNavio (весна 2013 года), рынок CAE в ближайшие пять лет будет ежегодно расти на 11,18% и к 2016-му достигнет 3,4 млрд. долл. Этот рост обусловлен целым рядом факторов, главный из которых - необходимость ускорения выпуска продукции на рынок. А основным тормозом, как и в случае CAD, является рост популярности систем с открытым исходным кодом, обусловленный высокой стоимостью лицензий на коммерческие CAE-системы.

Из географических регионов самым большим с точки зрения востребованности CAE в 2012-м стала Северная Америка, а по темпам роста первое место занял Азиатско-Тихоокеанский регион, в котором активно развивается промышленность.

Наибольшее распространение CAE-системы получили в автомобиле- и самолетостроении, электротехнике и электронике, тяжелом машиностроении и оборонной отрасли. Самый высокий рост спроса на CAE ожидается в автомобильной промышленности, а наименьший - в тяжелом машиностроении.

Ведущие позиции на рынке CAE занимают Ansys, MSC Software, Dassault Systemes, CD-adapco Group и LMS International. Кроме них в этой области работает немало менее крупных компаний, но число фирм, сосредоточенных только на CAE, сокращается, так как их покупают более крупные игроки ради их технологий.

В своем комментарии аналитики из TechNavio отметили, что некоторые крупные глобальные поставщики CAE и PLM начали продвигать `глобализованные` лицензии, которые позволяют купившим их заказчикам использовать CAE-системы в любой точке мира и обращаться за услугами поддержки в офис поставщика в любой стране. Это позволяет вендорам устранить разницу в стоимости своих продуктов в различных странах и продавать их по одной цене по всему миру. Аналитики ожидают, что данный подход будет применять все больше поставщиков CAE и PLM, и тогда на рынке произойдут значительные перемены с точки зрения ценовой политики вендоров.

CAD-системы (сomputer-aided design – компьютерная поддержка проектирования) предназначены для решения конструкторских задач и оформления конструкторской документации (более привычно они именуются системами автоматизированного проектирования САПР). Как правило, в современные CAD-системы входят модули моделирования трехмерной объемной конструкции (детали) и оформления чертежей и текстовой конструкторской документации (спецификаций, ведомостей и т.д.). Ведущие трехмерные CAD-системы позволяют реализовать идею сквозного цикла подготовки и производства сложных промышленных изделий.

CAM-системы (computer-aided manufacturing – компьютерная поддержка изготовления) предназначены для проектирования обработки изделий на станках с числовым программным управлением (ЧПУ) и выдачи программ для этих станков (фрезерных, сверлильных, эрозионных, пробивных, токарных, шлифовальных и др.). CAM-системы еще называют системами технологической подготовки производства. В настоящее время они являются практически единственным способом для изготовления сложнопрофильных деталей и сокращения цикла их производства. В CAM-системах используется трехмерная модель детали, созданная в CAD-системе.

САЕ-системы (computer-aided engineering – поддержка инженерных расчетов) представляют собой обширный класс систем, каждая из которых позволяет решать определенную расчетную задачу (группу задач), начиная от расчетов на прочность, анализа и моделирования тепловых процессов до расчетов гидравлических систем и машин, расчетов процессов литья. В CAЕ-системах также используется трехмерная модель изделия, созданная в CAD-системе. CAE-системы еще называют системами инженерного анализа.

Общая классификация CAD/CAM/CAE-систем

За почти 30-летний период существования CAD/CAM/CAE-систем сложилась их общепринятая международная классификация:

– чертежно-ориентированные системы, которые появились первыми в 70-е гг. (и успешно применяются в некоторых случаях до сих пор);

– системы, позволяющие создавать трехмерную электронную модель объекта, которая дает возможность решения задач его моделирования вплоть до момента изготовления;

– системы, поддерживающие концепцию полного электронного описания объекта (EPD, Electronic Product Definition). EPD – это технология, которая обеспечивает разработку и поддержку электронной информационной модели на протяжении всего жизненного цикла изделия, включая маркетинг, концептуальное и рабочее проектирование, технологическую подготовку, производство, эксплуатацию, ремонт и утилизацию. Вследствие разработки EPD-концепции и появились основания для превращения автономных CAD-, CAM- и CAE-систем в интегрированные CAD/CAM/CAE-системы.



Традиционно существует также деление CAD/CAM/CAE-систем на системы верхнего, среднего и нижнего уровней. Следует отметить, что это деление является достаточно условным, т.к. сейчас наблюдается тенденция приближения систем среднего уровня (по различным параметрам) к системам верхнего уровня, а системы нижнего уровня все чаще перестают быть просто двумерными чертежно-ориентированными и становятся трехмерными.

В настоящее время на рынке широко используются два типа твердотельного геометрических ядра – Parasolid от фирмы Unigraphics Solutions и ACIS от Spatial Technology.

Российские САПР

КОМПАС 3D (АСКОН)

T-FLEX CAD 3D (Топ Системы) – Parasolid

САПР «Сударушка» - CAD/CAM/CAE система. Является развитием системы ГЕМОС (геометрическое моделирование обводов самолета), разработанной специалистами Российской авиационной промышленности в ОКБ им. А. С. Яковлева в 1989-1994 годах.

ADEM (Россия, Израиль, Геомания) - САПР для конструкторско-технологической подготовки и станков с ЧПУ. Основным продуктом является интегрированная CAD/CAM/CAPP система ADEM VX. Название расшифровывается как "автоматизированное проектирование, расчет и изготовление" (Automated Design, Engineering, Manufacturing); adem.ru. – ACIS

WinELSO 7 – предназначена для автоматизации работ при проектировании электроснабжения объектов на все напряжения 3-фазного, 1-фазного переменного и постоянного токов (Русская Промышленная Компания – авторизованный разработчик приложений под продукты Autodesk (Autodesk Developer Network)); winelso.ru.

Эксперт-СКС (Эксперт-Софт, Москва) - САПР для автоматизации на всех этапах проектирования структурированных кабельных систем, ВОЛС, ЛВС, линейных и магистральных сетей; expertsoft.ru.

Также существуют бесплатные САПР с открытыми исходным кодом.

САПР не российских производителей

Dassault Systèmes , Франция:

CATIA - САПР для аэрокосмической промышленности;

SolidWorks – универсальная САПР для машиностроения, Parasolid.

MathCAD (Mathsoft, сейчас – Parametric Technology Corp.) - математическое моделирование.

P-CAD (Altium, Сидней, Австралия) - САПР для проектирования электронных устройств.

Pro/Engineer (Parametric Technology Corp.) - универсальная САПР для машиностроения. Parasolid

SolidEdge (UGS – Siemens PLM Software) - 2D/3D CAD-система.

Autodesk Inc. :

AutoCAD - самая распространённая САПР не российского производства. – – Autodesk Inventor - система трехмерного твердотельного проектирования для разработки сложных машиностроительных изделий – ACIS

Примерная стоимость систем, руб

Разделение на уровни условно, в основном зависит от функциональных возможностей и, следовательно, определяется ценой за рабочее место.

Системы низкого уровня к САПР никакого отношения не имеют. Это графические редакторы, предназначенные для автоматизации инженерно-графических работ, совместно с компьютером и монитором представляют собой "электронный кульман", то есть хороший инструмент для выполнения конструкторской документации. Эти системы называют двухмерными.

Общее название систем первого и второго уровней – трехмерные системы. Проектирование происходит на уровне твердотельных моделей с привлечением мощных конструкторско-технологических библиотек, с использованием современного математического аппарата для проведения необходимых расчетов. Эти системы позволяют с помощью средств анимации имитировать перемещение в пространстве рабочих органов изделия (например, манипуляторов роботов). Они отслеживают траекторию движения инструмента при разработке и контроле технологического процесса изготовления спроектированного изделия. Такие системы называются САПР/АСТПП (Системы Автоматизированного Проектирования/ Автоматизированные Системы Технологической Подготовки Производства), иначе говоря – сквозные САПР (CAD/CAM/CAE).

Системы CAD/CAM/CAE позволяют в масштабе целого предприятия логически связывать всю информацию об изделии, обеспечивать быструю обработку и доступ к ней пользователей, работающих в разнородных системах.

Создаваемая системой модель основана на интеграции данных и представляет собой полное электронное описание изделия, где присутствуют конструкторская, технологическая, производственная и др. базы данных по изделию. Это обеспечивает значительное улучшение качества, снижение себестоимости и сокращение сроков выпуска изделия на рынок.

Для проектирования систем электроснабжения (СЭ) возможно применение САПР из других отраслей производства, но специфические особенности систем электроснабжения как сложных технических систем требуют несколько другого подхода в проектировании.

Существующие системы проектирования СЭ, использующие вычислительную технику, ориентированы в основном на автоматизацию отдельных процедур или этапов процесса проектирования. Опыт показывает, что проще и эффективнее обучить специалистов по электроснабжению одной новой дисциплине – аппаратным и программным средствам вычислительной техники и САПР, чем специалистам-разработчикам САПР и программного обеспечения овладеть многими электротехническими дисциплинами, которые даются инженерам-электромеханикам. При изучении дисциплины "САПР электроснабжения" подразумевается знание курсов электротехнических дисциплин, а также умение работать с ЭВМ на уровне пользователя.

Функции CAD-систем в ма­шиностроении подразделяют на функции двухмерного (2D) и трехмерного (3D) проектирования. К функциям 2D относятся черчение, оформление конструкторской документации; к функциям 3D - по­лучение трехмерных моделей, метрические расчеты, реалистичная визуализация, взаимное преобра­зование 2D и 3D моделей.

Среди CAD-систем различают “легкие” и “тяжелые” системы. Первые из них ориентированы преимущественно на 2D графику, сравнительно дешевы и менее требовательны в отношении вычис­лительных ресурсов. Вторые ориентированы на геометрическое моделирование (3D), более универ­сальны, дороги, оформление чертежной документации в них обычно осуществляется с помощью предварительной разработки трехмерных геометрических моделей.

Основные функции CAM-систем: разработка технологических процессов, синтез управляющих программ для технологического оборудования с числовым программным управлением (ЧПУ), моде­лирование процессов обработки, в том числе построение траекторий относительного движения инст­румента и заготовки в процессе обработки, генерация постпроцессоров для конкретных типов обору­дования с ЧПУ (NC - Numerical Control), расчет норм времени обработки.

Наиболее известны (к 1999 г.) следующие CAE/CAD/CAM-системы, предназначенные для машиностроения. “Тяже­лые” системы (в скобках указана фирма, разработавшая или распространяющая продукт): Unigraphics (EDS Unigraphics); Solid Edge (Intergraph); Pro/Engineer (PTC - Parametric Technology Corp.), СЛТ1Л (Dassault Systemes), EUCLID (Matra Datavision), CADDS.5 (Computervision, ныне входит в PTC) и др.

“Легкие” системы: AutoCAD (Autodesk); АДЕМ; bCAD (ПроПро Группа, Новосибирск); Caddy (Ziegler Informatics); Компас (Аскон, С.Петербург); Спрут (Sprut Technology, Набережные Челны); Кредо (НИВЦ АСК, Москва).

Системы, занимающие промежуточное положение (среднемасштабные): Cimatron, Microstation (Bentley), Euclid Prelude (Matra Datavision), T-FlexCAD (Топ Системы, Москва) и др. С ростом возможностей персональных ЭВМ грани между “тяжелыми” и “легкими” CAD/CAM-системами постепенно стираются.

Функции CAE-систем довольно разнообразны, так как связаны с проектными процедурами ана­лиза, моделирования, оптимизации проектных решений. В состав машиностроительных САЕ-систем прежде всего включают программы для следующих процедур:

Моделирование полей физических величин, в том числе анализ прочности, который чаще все­го выполняется в соответствии с МКЭ;

Расчет состояний и переходных процессов на макроуровне;

Имитационное моделирование сложных производственных систем на основе моделей массо­вого обслуживания и сетей Петри.

Примеры систем моделирования полей физических величин в соответствии с МКЭ: Nastran, Ansys, Cosmos, Nisa, Moldflow.

Примеры систем моделирования динамических процессов на макроуровне: Adams и Dyna - в механических сис­темах, Spice - в электронных схемах, ПА9 - для многоаспектного моделирования, т.е. для моделирования систем, прин­ципы действия которых основаны на взаимовлиянии физических процессов различной природы.

Для удобства адаптации САПР к нуждам конкретных приложений, для ее развития целесообраз­но иметь в составе САПР инструментальные средства адаптации и развития. Эти средства представ­лены той или иной CASE-тсхнологисй, включая языки расширения. В некоторых САПР применяют оригинальные инструментальные среды.

Примерами могут служить объектно-ориентированная интерактивная среда CAS.CADE в системе EUCLID, содер­жащая библиотеку компонентов, в САПР T-Flex CAD 3D предусмотрена разработка дополнений в средах Visual C++ и Visual Basic.

Важное значение для обеспечения открытости САПР, се интегрируемости с другими автомати­зированными системами (АС) имеют интерфейсы, представляемые реализованными в системе форма­тами межпрограммных обменов. Очевидно, что, в первую очередь, необходимо обеспечить связи между CAE, CAD и САМ-подсистемами.

В качестве языков - форматов межпрограммных обменов - используются IGES, DXF, Express (стандарт ISO 10303-11, входит в совокупность стандартов STEP), SAT (формат ядра AC1S) и др.

Наиболее перспективными считаются диалекты языка Express, что объясняется общим характе­ром стандартов STEP, их направленностью на различные приложения, а также на использование в со­временных распределенных проектных и производственных системах. Действительно, такие форма­ты, как IGES или DXF, описывают только геометрию объектов, в то время как в обменах между раз­личными САПР и их подсистемами фигурируют данные о различных свойствах и атрибутах изделий.

Язык Express используется во многих системах интерфейса между CAD/CAM-системами. В частности, в систему CAD ++ STEP включена среда SDA1 (Standard Data Access Interface), в которой возможно представление данных об объек­тах из разных систем CAD и приложений (но описанных по правилам языка Express). CAD++ STEP обеспечивает доступ к базам данных большинства известных САПР с представлением извлекаемых данных в виде STEP-файлов. Интерфейс программиста позволяет открывать и закрывать файлы проектов в базах данных, производить чтение и запись сущностей. В качестве объектов могут использоваться точки, кривые, поверхности, текст, примеры проектных решений, размеры, свя­зи, типовые изображения, комплексы данных и т.п.

Определение CAD, САМ и CAE

Согласно предыдущему разделу, автоматизированное проектирование (computer- aided design - CAD) представляет собой технологию, состоящую в использовании компьютерных систем для облегчения создания, изменения, анализа и оптимизации проектов. Таким образом, любая программа, работающая с компьютерной графикой, также как и любое приложение, используемое в инженерных расчетах, относится к системам автоматизированного проектирования. Другими словами, множество средств CAD простирается от геометрических программ для работы с формами до специализированных приложений для анализа и оптимизации. Между этими крайностями умещаются программы для анализа допусков, расчета масс-инерционных свойств, моделирования методом конечных элементов и визуализации результатов анализа. Самая основная функция GAD - определение геометрии конструкции (детали механизма, архитектурные элементы, электронные схемы, планы зданий и т, и,), поскольку геометрия определяет все последующие этапы жизненного цикла продукта. Для этой цели обычно используются системы разработки рабочих чертежей и геометрического моделирования. Вот почему эти системы обычно и считаются системами автоматизированного проектирования. Более того, геометрия, определенная в этих системах, может использоваться в качестве основы для дальнейших операций в системах САЕ и САМ. Это одно из наиболее значительных преимуществ CAD, позволяющее экономить время и сокращать количество ошибок, связанных с необходимостью определять геометрию конструкции с нуля каждый раз, когда она требуется в расчетах. Можно, следовательно, утверждать, что системы автоматизированной разработки рабочих чертежей и системы геометрического моделирования являются наиболее важными компонентами автоматизированного проектирования.

Автоматизированное производство (computer-aided manufacturing - САМ) - это технология, состоящая в использовании компьютерных систем для планирования, управления и контроля операций производства через прямой или косвенный интерфейс с производственными ресурсами предприятия. Одним из наиболее зрелых подходов к автоматизации производства является числовое программное управление (ЧПУ, numerical conovl - NC). ЧПУ заключается в использовании запрограммированных команд для управления станком, который может шлифовать, резать, фрезероваггь, штамповать, изгибать и иными способами превращать заготовки в готовые детали. В наше время компьютеры способны генерировать большие программы для станков с ЧПУ на основании геометрических параметров изделий из базы данных CAD и дополнительных сведений, предоставляемых оператором. Исследования в этой области концентрируются на сокращении необходимости вмешательства оператора.

Еще одна важная функция систем автоматизированного производства - программирование роботов, которые могут работать на гибких автоматизированных участках, выбирая и устанавливая инструменты и обрабатываемые детали на станках с ЧПУ Роботы могут также выполнять свои собственные задачи, например, заниматься сваркой, сборкой и переносом оборудования и деталей по цеху.

Планирование процессов также постепенно автоматизируется. План процессов может определять последовательность операций по изготовлению устройства от начала и до конца на всем необходимом оборудовании. Хотя полностью автоматизированное планирование процессов, как уже отмечалось, практически невозможно, план обработки конкретной детали вполне может бьггь сформирован автоматически, если уже имеются планы обработки аналогичных деталей. Для этого была разработана технология группировки, позволяющая объединять схожие детали о семейства. Детали считаются подобными, если опт имеют общие производственные особенности (гнезда, пазы, фаски, отверстия и т, д.). Для аЕггомалгического обнаружения схожести деталей необходимо, чтобы бала данных CAD содержала сведения о таких особенностях. Эта задача осуществляется при помощи объектно-ориентированного моделирования или распознавания элементов.

Вдобавок, компьютер может использоваться для того, чтобы выявлять необходимость заказа исходных материалов и покупных деталей, а также определять их количество исходя из графика производства. Называется такая деятельность планированием технических требований к материалу (material requirements planning - MRP). Компьютер может также использоваться для контроля состояния станков в цехе и отправки им соответствующих заданий.

Автоматизированное конструирование (computer-aided engineering - CAE) - это технология, состоящая в использовании компыотерных систем для анализа геометрии CAD, моделирования и изучения поведения продукта для усовершенствования и оптимизации его конструкции. Средства САЕ могут осуществлять множество различных вариантов анализа. Программы для кинематических расчетов, например, способны определять траектории движения и скорости звеньев и механизмах. Программы динамического анализа с большими смещениями могут использоваться для определения нагрузок и смещений в сложных составных устройствах типа автомобилей. Программы верификации и анализа логики и синхронизации имитируют работу сложных электронных цепей.

По всей видимости, из всех методов компьютерного анализа наиболее широко в конструировании используется метод конечных элементов (finite - element method - FEM). С его помощью рассчитываются напряжения, деформации, теплообмен, распределение магнитного поля, потоки жидкостей и другие задачи с непрерывными средами, решать которые каким-либо иным методом оказывается просто непрактично. В методе конечных элементов аналитическая модель структуры представляет собой соединение элементов, благодаря чему она разбивается на отдельные части, которые уже могут обрабатываться компьютером.

Как отмечалось ранее, для использования метода конечных элементов нужна абстрактная модель подходящего уровня, а не сама конструкция. Абстрактная модель отличается от конструкции тем, что она формируется путем исключения несущественных деталей и редуцирования размерностей. Например, трехмерный объект небольшой толщины может быть представлен в виде двумерной оболочки. Модель создается либо в интерактивном режиме, либо автоматически. Готовая абстрактная модель разбивается на конечные элементы, образующие аналитическую модель. Программные средства, позволяющие конструировать абстрактную модель и разбивать ее па конечные элементы, называются препроцессорами (preprocessors). Проанализировав каждый элемент, компьютер собирает результаты воедино и представляет их в визуальном формате. Например, области с высоким напряжением могут быть, выделены красным цветом. Программные средства, обеспечивающие визуализацию, называются постпроцессорами (postprocessors).

Существует множество программных средств для оптимизации конструкций. Хотя средства оптимизации могут быть отнесены к классу САЕ, обычно их рассматривают отдельно. Ведутся исследования возможности автоматического определения формы конструкции путем объединения оптимизации и анализа. В этих подходах исходная форма конструкции предполагается простой, как, например, у прямоугольного двумерного объекта, состоящего из небольших элементов различной плотности. Затем выполняется процедура оптимизации, позволяющая определить конкретные значения плотности, позволяющие достичь определенной цели с учетом ограничений на напряжения. Целью часто является минимизация веса. После определения оптимальных значений плотности рассчитывается оптимальная форма объекта. Она получается отбрасыванием элементов с низкими значениями плотности.

Замечательное достоинство методов анализа и оптимизации конструкций заключается в том, что они позволяют конструктору увидеть поведение конечного продукта и выявить возможные ошибки до создания и тестирования реальных прототипов, избежав определенных затрат. Поскольку стоимость конструирования на последних стадиях разработки и производства продукта экспоненциально возрастает, ранняя оптимизации и усовершенствование (возможные только благодаря аналитическим средствам САЕ) окупаются значительным снижением сроков и стоимости разработки.

Таким образом, технологии CAD, САМ и САЕ заключаются в автоматизации и повышении эффективности конкретных стадий жизненного цикла продукта. Развиваясь независимо, эти системы еще не до конца реализовали потенциал интеграции проектирования и производства. Для решения этой проблемы была предложена новая технология, получившая название компьютеризованного

интегрированного производства (computer - integrated manufacturing - С/М). CIM пытается соединить «островки автоматизации» вместе и превратить их в бесперебойно и эффективно работающую систему. CIM подразумевает использование компьютерной базы данных для более эффективного управления всем предприятием, в частности бухгалтерией, планированием, доставкой и другими задачами, а не только проектированием и производством, которые охватывались системами CAD, САМ и CAE. С1М часто называют философией бизнеса, а не компьютерной системой.

Наконец, системы управления инженерными данными (PDM - Product Data Management) обеспечивают хранение и управление проектно-конструкторской документации разрабатываемых изделий, ведение изменений в документации, сохранение истории этих изменений и т. п.

Итак, термин САПР (система автоматизации проектирования) подразумевает комплексный подход к разработке изделия и включает совокупность систем CAD/CAM/CAE. Развитие систем геометрического моделирования, анализа и расчета характеристик изделия сопровождается интеграцией в рамках предприятия. Мировой рынок обособленных CAD/CAM решений уже насыщен, системы близки по функциональности, и темпы роста этого сегмента рынка минимальны. По этой причине происходит усиление интеграции систем CAD/CAM/CAE с системами PDM, которые позволяют хранить и управлять проектно-конструкторской документацией на разрабатываемые изделия, вносить в документацию изменения, поддерживать хранение истории этих изменений. Распространение функций PDM-систем на все этапы жизненного цикла продукции превращает их в системы PLM (Product Lifecycle Management). Развитие систем PLM обеспечивает максимальную интеграцию процессов проектирования, производства, модернизации и сопровождения продукции предприятия и по сути имеет много общего с концепцией интегрированной поддержки жизненного цикла изделия (CALb-технологии).

 


Читайте:



Как установить Android — Пошаговая инструкция Прошивка версии android 5

Как установить Android — Пошаговая инструкция Прошивка версии android 5

Долгожданный Леденец оказался не таким доступным, как прошлая версия андроида. Даже сейчас, спустя год после его официального анонса, достаточно...

Как бесплатно скачать браузер Амиго?

Как бесплатно скачать браузер Амиго?

Данный браузер является разработкой отечественной компании Mail.ru. Появился он в июле 2013 года и изначально создавался под систему Windows, а...

Для чего нужен телеграмм и чем он лучше конкурентов

Для чего нужен телеграмм и чем он лучше конкурентов

В последнее время среди пользователей огромной популярностью стали пользоваться мессенджеры, которые позволяют обмениваться текстовыми сообщениями...

Процесс снятия клавиатуры с ноутбука своими руками

Процесс снятия клавиатуры с ноутбука своими руками

Можно не разбирать корпус, а только снять кнопки и помыть их, а сам корпус очистить салфетками и ватными палочками. Но поглядев на свою клавиатуру...

feed-image RSS